Casi cualquier persona diría 'Que!...¿Tiene que ver algo el crochet con la geometría no-clásica? ', así es, sorpresa e incredulidad son las más probables reacciones ante la simple idea de relacionar este arte textil con ideas geométricas poco intuitivas para muchas personas, para los que la matemática no está en la lista corta de sus intereses. La escritora y divulgadora científica Margaret Wertheim expresa esta ideas de una manera mucho más contundente en su charla TED que puedes revisar más abajo. Para mayores referencia puedes visitar la página del Institute For Figuring
La naturaleza por sí sola genera patrones que parecen sacados de un libro de matemáticas. Aprecia la belleza del Hongo Red Cage que tiene formas similares a poliedros, si quieres disfrutar de un diaporama sigue este LINK
Nos entrevistaron nuevamente, esta vez conversamos sobre lo que somos y que deseamos para nuestro futuro. Los invitamos a escuchar esta entrevista del pasado 10 de Mayo, recorreremos y expondremos que valores, principios y objetivos nos convocan y a los que invitamos compartir en el trabajo semana a semana de nuestro círculo.
Espacio y tiempo, son nuestras primeras referencias para describir nuestro universo. Muchas veces, olvidamos, o simplemente asumimos que nuestras acciones del día a día dependen de cómo nos desplazamos y como organizamos las distintas tareas en función del tiempo y lugar en que nos encontramos. En definitiva, algo que nos parece intrínseco, propio a nuestra naturaleza tal como los son el espacio y el tiempo, no son más que construcciones conceptuales de nuestra razón. ¿Podrían imaginar un mundo, un universo sin ese orden aparente? ¿Cómo podríamos predecir la trayectoria de un satélite, el próximo eclipse lunar?
La siguiente es una referencia a una exposición que Cerith Wyn Evans, LINK quien nos entrega una sugerente instalación de luces y formas, configuradas en el tiempo.
Te dejamos las simples reglas del juego de Nim. Si quieres saber como ganar en este juego, te invitamos a participar de nuestros talleres todos los sábados del mes en el Museo Interactivo de Osorno.
Los invitamos a ver esta presentación TED ('Technology, Entertainment, and Design' plataforma de charlas de divulgación científica) . Beau Lotto es neurocientista quien habla sobre las percepciones visuales y como el contexto es crucial en ella. Esta presentación en una buena realización y metáfora de nuestra consigna 'Mira el mundo con otros ojos'!
Rigoberto Medina, matemático, analista matemático formado en la Universidad de Chile, ha realizado su labor de científico e investigador en el Departamento de Ciencias Exactas, de la Universidad De Los Lagos, campus Osorno. Ha sido formador de decenas de profesores de matemática y computación, muchos de los cuales han proseguido estudios de posgrado en matemática, ejerciendo en el mundo académico y consolidando sus carreras en el desarrollo de la matemática. En su trayectoria destaca una consistente y destacada producción científica traducida en publicaciones, adjudicación de proyectos fondecyt entre otros, y principalmente una permanente colaboración con matemáticos extranjeros. Esto son algunos de los antecedentes que podemos compartir en esta oportunidad, es por esto que los invitamos a leer con atención y dedicación la entrevista que a continuación entregamos en extenso.
CM: ¿A qué personas consideras tus mentores antes de llegar a tu primer posgrado?
RM: La primera persona que me mostró la belleza de la matemática, fue un ingeniero civil, el Dr. B. Muñoz, en la Escuela de Arquitectura de la U. de Chile. Pues enseñaba las interrelaciones del álgebra, Geometría, Aritmética y Cálculo. Me dio consejos y apoyo logístico invaluable. Con su ayuda conocí algunos trabajos de P. Erdös y A. Grothendieck.
CM: ¿Qué lleva una a la otra, 'capacidades a las oportunidades', o bien 'las oportunidades a las capacidades'?
RM: Un Investigador en matemáticas tiene que estar apasionadamente interesado en el tema y totalmente dedicado a ello. Sin una fuerte motivación interna no se puede tener éxito. Pienso que no se puede confiar plenamente en las habilidades que uno tiene. Pero mientras mejores y más altas sean las metas que te propones, llegaras más allá de tus capacidades. En síntesis, pienso que la fuerza conductora en la investigación es la curiosidad.
CM: ¿Cuál fue la primera idea matemática que apreciaste?
RM: Al comienzo me apasionaba la aritmética y la geometría euclidiana, pero la idea de Límite siempre me pareció relevante pues subyace, de alguna forma, en todo el Análisis
CM: ¿Cuál es tu definición de la matemática?
RM: En cada época se tiene una idea sobre la matemática, generalmente equivoca. Matemática es para algunos un repertorio de fórmulas, logaritmos, funciones trigonométricas, es decir, un verdadero cúmulo operatorio, carente de vida, aburrido, indigerible y que hace que todo el mundo odie la Matemática. En otro nivel, Matemática es cálculo diferencial e integral, especialmente por su aplicación a la Física. En el mejor de los casos se enfatiza la matemática por su sometimiento a otras disciplinas, como también por su carácter deductivo, como ciencia lógica y formal. Para mí la Matemática es una ciencia con fin en si misma, y sólo de manera subordinada contribuye a investigaciones fuera del campo le es propio. Es una obra de pensamiento puro, que tiene la belleza y sugestión propia de toda construcción exclusivamente mental.
CM: ¿La matemática se crea o se descubre?
RM: Para comenzar, la creación y el descubrimiento tienen mucho en común: ambas provienen de la búsqueda, la investigación. Debido a la naturaleza de los objetos matemáticos, decidir cuando una idea matemática particular fue descubierta o creada, a menudo no se puede resolver. Porque ¿Qué significa reconocer algo, conocerlo? ¿Qué es creación? ¿ Qué es descubrimiento ?. Esta discusión tiene que ver con la misteriosa forma que tiene el conocimiento. Otra componente de esta discusión es la “existencia” de las afirmaciones. Por ejemplo, un axioma establecido en cierto siglo, tiene como consecuencia lógica un teorema cuya demostración se encuentra muchos siglos más tarde. Entonces, cuándo empezó a existir el teorema?. Decimos que un teorema es “descubierto” y una demostración es “creada”, pero algo descubierto siempre ha estado allí, mientras que algo “inventado” no existía. Yo pienso que la demostración de un teorema se debe inventar, y por ello hay tantas demostraciones diferentes de un mismo teorema.
CM: ¿Cuál fue la primera idea matemática que descubriste (creaste)?
RM: Estudiando la estabilidad de las soluciones de una ecuación diferencial, aparece el concepto de “estabilidad asintótica”, que intuitivamente significa que las soluciones convergen con cierta rapidez a un estado de equilibrio de la ecuación. Sin embargo, en un espacio multidimensional, incluso, bidimensional, hay infinitas formas en que una órbita se puede acercar a un punto de equilibrio. No había una respuesta precisa a esa cuestión. Yo desarrollé la idea de Fórmula Asintótica, que en síntesis, describe cómo la solución se acerca al punto de equilibrio. Esto resultó muy útil para los Ingenieros pues les proveía de un algoritmo para decidir sobre la Estabilidad Asintótica de un sistema de ecuaciones diferenciales.
CM: ¿Qué pregunta matemática te gustaría responder?
RM: Me gustaría responder si los Fundamentos Teóricos de la teoría de sistemas dinámicos discretos están establecidos. Como la respuesta es negativa, me gustaría crear Principios Generales en la Teoría de Sistemas Dinámicos Discretos que permitieran una mejor comprensión del significado exacto de los conceptos “tiempo discreto” y “espacio discreto”. Además, estos principios permitirían la creación de un nuevo “cálculo” para dinámicas discretas complejas.
CM: ¿Qué objeto, no necesariamente matemático, en tu opinión captura la idea matemática más interesante?
RM: Un copo de nieve se puede asociar con la idea de fractal y su topología.
CM: ¿Qué encontraste en la matemática que no encontraste en otra ciencia?
RM: Por una parte, porque en la matemática no hay fronteras para los pensamientos y la imaginación y por otra, es que el mundo (la realidad) está hecho tanto de cosas visibles como invisibles y, la matemática es la única ciencia con la capacidad de pasar de la observación de cosas visibles a la imaginación de cosas invisibles.
CM: ¿Qué rol le vez a la matemática en los desafíos que enfrenta la humanidad?
RM: Las matemáticas están y serán crecientemente influenciadas por el reto de tratar con la complejidad y la multidisciplinariedad. En efecto, las neurociencias y las ciencias sociales ganarán relevancia. Por tanto la matemática del futuro tendrá un rol protagónico en la búsqueda de soluciones a problemas y desafíos que enfrenta la humanidad.
CM: ¿Qué riesgos, si es que vez alguno, existen en el uso de la matemática?
RM: Pienso que las creaciones tanto de la Matemática como la Física no tienen contradicciones con la ética. Otra cosa es el uso que hacen los políticos de ellas. Como la creación de armas de destrucción masiva o armas letales.
Esta es una iniciativa del colegio Green School de la comuna de Brooklyn en New York, Estados Unidos, el objetivo es pintar murales en que esté representado el número PI, el desafío es que su comunidad y entorno sean cómplices de colorear alegremente muros y rincones que en su estado natural son grises y feos. Revisa las distintas obras de esta iniciativa alegre, artistica y matemática LINK
El pasado 22 de Abril estuvimos participando de la realización del Campeonato Escolar de Matemática XV, primera versión en que la comunidad de Osorno y la Región De Los Lagos se hace parte, mayores antecedentes en nota de prensa LINK. Contamos con la participación de estudiantes del Colegio Carmela Carvajal de Prat de Osorno. Esto recién comienza, así es que si deseas participar y que tu colegio, liceo también lo haga contacta a tu profesor de matemática para que se inscriban y participen! Mayores informaciones en LINK
Así como hemos apreciado la belleza de la naturaleza, la hemos tratado de entender en la multiplicidad de sus formas. John Edmark a utilizado la matemática para crear una gran variedad de objetos que sin duda replican muchas de las cosas que vemos a nuestro alrededor, por ejemplo la caprichosa alcachofa. Si quiere conocer más de la obra de este artista desde su página web LINK