Andrés Navas, matemático y actual Presidente de la Sociedad de Matemática de Chile, responde nuestro Cuestionario Inspiracional!

Escrito por

 Para nosotros es un agrado poder compartir con ustedes las respuestas del Dr. Andrés Navas, académico del Departamento de Matemáticas y Ciencias de la Computación de la Universidad de Santiago de Chile. Como una breve reseña podemos destacar, que a pesar de su corta edad  es el actual Presente de Sociedad de Matemática de Chile, organización que vela por el desarrollo de esta disciplina y todas las áreas en que ella se expresan actualmente en Chile. Otro aspecto importante a destacar, es que su carrera académica lo llevó a Doctorarse en la École Normale Supérieure de Lyon. Cuenta con diversos reconocimientos a su trabajo y quehacer en matemática, el más reciente premio le fue otorgado por la Unión Matemática de América Latina y el Caribe (UMALCA). Dejamos a continuación las respuestas de Andrés a nuestro cuestionario.

 

CM: ¿A qué personas consideras tus mentores antes de llegar a tu primer posgrado? 

AN: En lugar de referirme a personas, prefiero referirme a instituciones. Mi profesora de Ens. Básica, Cecilia Saavedra, fue muy importante, pero ello porque enseñaba dentro de un esquema normalista. Es decir, cualquier profesor normalista hubiese cumplido ese rol. En segundo lugar, recuerdo con aprecio muchos de mis profesores del Instituto Nacional, especialmente Domingo Almendras. Y por último, a todos quienes colaboraban con las Olimpiadas de Matemáticas por aquellos años, en particular uno que ya no está: Sergio Plaza.

CM: ¿Qué lleva una a la otra, 'capacidades a las oportunidades', o bien 'las oportunidades a las capacidades'?

AN: Creo que, como en todo ámbito, estos procesos funcionan simbióticamente. La academia debe propiciar que las oportunidades sean lo más equitativas posibles, pero no debe descuidar el fomento de algún talento especial.

CM: ¿Cuál fue la primera idea matemática que apreciaste? 

AN: Mi profesora de Ens. Básica nos hacía clases especiales (gratuitas y los sábados) a todos quienes pretendíamos seguir hacia un Liceo de Excelencia (hoy llamados “Emblemáticos”). En uno de esos talleres nos enseñó los criterios de divisibilidad. Fue mágico. Aún recuerdo el momento exacto en que se refiere a la divisibilidad por 7. Eso sale mencionado al comienzo en mi libro.

CM ¿Cuál es tu definición de la matemática?

AN: “La ciencia de la esencia”: ver el epílogo de mi libro.

CM: ¿La matemática se crea o se descubre?

AN: Imposible a responder ahora: ver mi video en Youtube (Matemática: invento o descubrimiento) donde me refiero precisamente a eso.

CM: ¿Cuál fue la primera idea matemática que descubriste (creaste)?

AN: Cuando estaba en séptimo básico, el profesor nos enseñó la fórmula de la cantidad de subconjuntos que tiene un conjunto (2^n, donde n es el numero de elementos del conjunto. Un compañero preguntó por qué era así. El profesor, con mucha honestidad, respondió que no sabía, y nos pidió investigar. Comenzamos a trabajar y… ¡hicimos la primera demostración por inducción de nuestras vidas¡ (claro que en un lenguaje coloquial; el hecho de que eso que habíamos elucubrado era una demostración por inducción lo entendimos años después).

CM: ¿Qué pregunta matemática te gustaría responder?

AN: Una pregunta que me intriga pero que obviamente no puedo responder es: ¿cómo serán las matemáticas dentro de 5 mil años? (si sobrevivimos, claro está). A eso me refiero en parte al final del epílogo de mi libro

CM: ¿Qué objeto, no necesariamente matemático, en tu opinión captura la idea matemática más interesante? 

AN: El concepto de “grupo” me parece fascinante. Engloba conceptualmente las posibles articulaciones de las simetrías. Simplemente apasionante.

CM: ¿Qué encontraste en la matemática que no encontraste en otra ciencia?

AN: Curiosamente, yo seguí en esta ciencia (y no en otras) porque era la única que me permitía avanzar por mi cuenta. Para aprender matemática se puede ser autodidacta; para las otras ciencias es mucho más difícil. Yo me formé en un contexto social difícil, donde no tenía mucho acceso a información. Por lo demás, soy el primer universitario de toda mi familia (en un sentido amplio); por lo mismo, no tenía a quien recurrir para avanzar. Por eso, mis guías eran los libros de Euclides, el Hall and Knigh de álgebra, los de Mercado Schuller, Torreti, etc… Devoraba cuanta cosa hallaba en las ferias de libros usados de la calle San Diego, que compraba con la plata que recibía por hacer clases de reforzamiento de matemática. Sin esos libros, no hubiese podido hacer gran cosa. Luego, seguí en la matemática sin preguntarme mucho si debía tomar otros rumbos, aunque actualmente me seducen muchos otros ámbitos (física teórica, sociología), pero siempre desde una visión que proviene desde el pensamiento matemático.

CM: ¿Qué rol le ves a la matemática en los desafíos que enfrenta la humanidad?

AN: La matemática es fundamental en dos direcciones. En primer lugar, ella permite (cuando es bien enseñada) fortalecer los esquemas de pensamiento y de rigor lógico que deben prevalecer en discusiones de todo tipo, algo que va mucho más allá de lo meramente científico, pues abarca también lo social y lo político. Por otro lado, ella es la herramienta fundamental que nos permitirá avanzar en la búsqueda de soluciones a problemas que poco a poco se han vuelto dramáticos para la humanidad, como el cambio climático o la organización de nuestras ciudades de manera más inteligente. 

CM: ¿Qué riegos, si es que vez alguno, existen en el uso de la matemática? 

AN: La matemática está allí a disposición de quien la requiera. Si alguien le da un uso, por ejemplo, armamentístico, no es un problema de la matemática, sino político. Ahora bien, hay un aspecto que debemos cuidar, y es justamente el hecho de que el conocimiento debe ser siempre público. Últimamente han aparecido agencias que financian investigación estratégica con la cláusula de que esta no pueda ser revelada. Debemos oponernos a estas prácticas con toda la fuerza posible.

 

 

 

Medios